Symplectic duality of symmetric spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symplectic Duality of Symmetric Spaces

Let (M, 0) ⊂ C be a complex n -dimensional Hermitian symmetric space endowed with the hyperbolic form ωB . Denote by (M ∗, ω∗ B ) the compact dual of (M,ωB) , where ω ∗ B is the Fubini–Study form on M∗ . Our first result is Theorem 1.1 where, with the aid of the theory of Jordan triple systems, we construct an explicit diffeomorphism ΨM : M → R = C ⊂ M∗ satisfying Ψ∗ M (ω0) = ωB and Ψ ∗ M (ω∗ B...

متن کامل

Symmetric symplectic spaces with Ricci-type curvature

We determine the isomorphism classes of symmetric symplectic manifolds of dimension at least 4 which are connected, simply-connected and have a curvature tensor which has only one non-vanishing irreducible component – the Ricci tensor.

متن کامل

symplectic hodge theory, harmonicity, and thom duality

we study the notion of harmonicity in the sense of symplectic geometry, and investigate the geometric properties of harmonic thom forms and distributional thom currents, dual to different types of submanifolds. we show that the harmonic thom form associated to a symplectic submanifold is nowhere vanishing. we also construct symplectic smoothing operators which preserve the harmonicity of distri...

متن کامل

Generalized Symmetric Berwald Spaces

In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.

متن کامل

Symplectic geometry on symplectic knot spaces

Symplectic knot spaces are the spaces of symplectic subspaces in a symplectic manifold M . We introduce a symplectic structure and show that the structure can be also obtained by the symplectic quotient method. We explain the correspondence between coisotropic submanifolds in M and Lagrangians in the symplectic knot space. We also define an almost complex structure on the symplectic knot space,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2008

ISSN: 0001-8708

DOI: 10.1016/j.aim.2007.10.009